Linking computational models of two core tasks of cognitive control / Maria M. Robinson and Mark Steyvers

By: Contributor(s): Material type: TextTextPublication details: Washington D.C. : American Psychological Association, c2022Description: pages 71-101 : tables, figuresISSN:
  • 0033-295X
Subject(s): Online resources: In: Psychological Review Volume 130, Number 1 (January 2023)Summary: Cognitive control refers to the ability to maintain goal-relevant information in the face of distraction, making it a core construct for understanding human thought and behavior. There is great theoretical and practical value in building theories that can be used to explain or to predict variations in cognitive control as a function of experimental manipulations or individual differences. A critical step toward building such theories is determining which latent constructs are shared between laboratory tasks that are designed to measure cognitive control. In the current work, we examine this question in a novel way by formally linking computational models of two canonical cognitive control tasks, the Eriksen flanker and task-switching task. Specifically, we examine whether model parameters that capture cognitive control processes in one task can be swapped across models to make predictions about individual differences in performance on another task. We apply our modeling and analysis to a large scale data set from an online cognitive training platform, which optimizes our ability to detect individual differences in the data. Our results suggest that the flanker and task-switching tasks probe common control processes. This finding supports the view that higher level cognitive control processes as opposed to solely strategies in speed and accuracy tradeoffs, or perceptual processing and motor response speed are shared across the two tasks. We discuss how our computational modeling substitution approach addresses limitations of prior efforts to relate performance across different cognitive control tasks, and how our findings inform current theories of cognitive control.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Materials specified Status Date due Barcode
Continuing Resources Continuing Resources NU Clark Journals Reference Available

Includes bibliographical references (pages 90-94)

Cognitive control refers to the ability to maintain goal-relevant information in the face of distraction, making it a core construct for understanding human thought and behavior. There is great theoretical and practical value in building theories that can be used to explain or to predict variations in cognitive control as a function of experimental manipulations or individual differences. A critical step toward building such theories is determining which latent constructs are shared between laboratory tasks that are designed to measure cognitive control. In the current work, we examine this question in a novel way by formally linking computational models of two canonical cognitive control tasks, the Eriksen flanker and task-switching task. Specifically, we examine whether model parameters that capture cognitive control processes in one task can be swapped across models to make predictions about individual differences in performance on another task. We apply our modeling and analysis to a large scale data set from an online cognitive training platform, which optimizes our ability to detect individual differences in the data. Our results suggest that the flanker and task-switching tasks probe common control processes. This finding supports the view that higher level cognitive control processes as opposed to solely strategies in speed and accuracy tradeoffs, or perceptual processing and motor response speed are shared across the two tasks. We discuss how our computational modeling substitution approach addresses limitations of prior efforts to relate performance across different cognitive control tasks, and how our findings inform current theories of cognitive control.

There are no comments on this title.

to post a comment.

© 2024 NU LRC CLARK. All rights reserved. Privacy Policy I Powered by: KOHA